Spacelike Dupin hypersurfaces in Lorentzian space forms
نویسندگان
چکیده
منابع مشابه
Spacelike hypersurfaces in Riemannian or Lorentzian space forms satisfying L_k(x)=Ax+b
We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملspacelike hypersurfaces in riemannian or lorentzian space forms satisfying l_k(x)=ax+b
we study connected orientable spacelike hypersurfaces $x:m^{n}rightarrowm_q^{n+1}(c)$, isometrically immersed into the riemannian or lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~l_kx=ax+b$,~ where $l_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $h_{k+1}$ of the hypersurface for a fixed integer $0leq k
متن کاملSpacelike Willmore surfaces in 4-dimensional Lorentzian space forms
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...
متن کاملSpacelike hypersurfaces in de Sitter space
In this paper, we study the close spacelike hypersurfaces in de Sitter space. Using Bonnet-Myer’s theorem, we prove a rigidity theorem for spacelike hypersurfaces without the constancy condition on the mean curvature or the scalar curvature. M.S.C. 2010: 53C40, 53B30.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2018
ISSN: 0025-5645
DOI: 10.2969/jmsj/07027573